Pediatric Head CT: A Diagnostic Challenge?

Unni Udayasankar MD Professor and Vice Chair Department of Medical Imaging University of Arizona

Banner University Medical Center Tucson

Learning Objectives

- Extra-axial spaces
 - Abusive head trauma
- Parenchymal appearance
- Sutures vs fractures
- What is normal for age?

Extra-Axial Spaces

Mass effect

Displacement of vessels

- Most common finding: Subdural hematoma (90%)
- Mixed attenuation SDH:
 - More in AHT
 - Acute on chronic VS Hematohygroma
- Precise estimation of age of the mixedattenuation SDH on the initial CT should be avoided
- Tearing of the bridging veins

- Most common finding: Subdural hematoma (90%)
- Mixed attenuation SDH:
 - More in AHT
 - Acute on chronic VS Hematohygroma
- Precise estimation of age of the mixedattenuation SDH on the initial CT should be avoided
- Tearing of the bridging veins

- Most common finding: Subdural hematoma (90%)
- Mixed attenuation SDH:
 - More in AHT
 - Acute on chronic VS Hematohygroma
- Precise estimation of age of the mixedattenuation SDH on the initial CT should be avoided
- Tearing of the bridging veins

- Most common finding: Subdural hematoma (90%)
- Mixed attenuation SDH:
 - More in AHT
 - Acute on chronic VS Hematohygroma
- Precise estimation of age of the mixedattenuation SDH on the initial CT should be avoided
- Tearing of the bridging veins

Parenchymal attenuation: Younger children

Arterial watershed infarcts

• Newborn status post difficult labor

Diffuse anoxic brain injury

6-month-old with altered mental status

Parenchymal morphology: Older children

Three scenarios of sulci:

Completely effaced Partial effacement Looks normal

Interpretation summary

Completely effaced	Abnormal. Look for other signs and/or an explanation of edema and/or mass effect.
Some hints of sulci are seen	Could be normal but cannot definitely exclude global mass effect in the absence of a baseline imaging study.
Looks normal	Likely normal. Probably no global mass effect/brain swelling.

Below: Diffuse cerebral swelling (same patient as above), impending herniation (arrows: 4th ventricle blunted perimesencephalic cistern effaced, sulci effaced

Normal

Diffuse swelling, impending herniation

Craniosynostosis

Questionable subarachnoid hemorrhage

9 month old boy

• Does this newborn have subdural hemorrhages?

Sutures:

- Coronal
- Sagittal
- Lambdoid
- Squamosal
- Remaining sutures are named after the adjacent bones
- Metopic and mendosal (metopic=frontal; Mendosal =posterior intraoccipital)

3D Volume Rendered Images

- 3D volume rendered images can increase detection of fracture and diastatsis and are routinely done at our institution.
- These images require minimal post-processing, and do not increase radiation dose.
- Good practice to include 3D rendered images in your practice

Coronal Suture

Coronal suture

Sagittal suture

Lambdoid suture

lambdoid suture.

Metopic or frontal suture

Posterior intraoccipital suture

Squamosal suture

Parietomastoid Occipitomastoid Sphenotemporal

Accessory Sutures

The interparietal suture is an accessory suture of the upper part of the occipital bone that wedges between the parietal bones

Frequently confused with a fracture, especially when asymmetrical! 3D bone renderings (left) and MIP (maximum intensity projections, right) can help in visualizing sutures and fractures.

Accessory parietal suture

Suture Closures

Structure	Closure
Posterior fontanelle	by 3 mo
Sphenoidal fontanelle	by 6 mo
Metopic suture	by 3-9 mo
Mastoid fontanelle	by 6-18 mo
Anterior fontanelle	by 1-3 yrs
Posterior intraoccipital suture	by 1-3 yrs
Coronal, lambdoid and sagittal sutures	by teenage years

Skull Fractures

Corticated right mastoid-occipital suture

Non-corticated right occiptal fracture

Immature suture, not corticated

17 day old girl Left sphenotemporal suture

Suture dehiscence

12 year old boy, lambdoid sutures

Traumatic dehiscence right

Normal left

Right parietal skull fracture

Skull fracture (blue arrow) more linear (but curved course) than sagittal and lambdoid sutures.

10 month old girl, right parietal fracture

Metopic suture

8 year old boy

Midline occipital fracture

Head tilt

Right temporal fracture?

Linear bone lucency is symmetrical considering tilted head.

The lucency is part of the sphenotemporal suture.

Fracture?

Ongoing sutural maturation

A small bone "finger" (blue arrow)can mimic a fracture is axial plane (dotted line)

Birth Trauma

- Small birth-related subdural hematomas are observed in 8–46% of asymptomatic newborn infants
- Resolve in the overwhelming majority of infants within the first 4–6 postnatal weeks
- No evidence to support rebleeding

Subgaleal hematoma vs Cephalhematoma

